Difference between revisions of "CDS 212 Fall 2010"
Line 80:  Line 80:  
 style="borderbottom:3px solid gray;"  [[CDS 212, Homework 4, Fall 2010HW 4]]   style="borderbottom:3px solid gray;"  [[CDS 212, Homework 4, Fall 2010HW 4]]  
 style="borderbottom:3px solid gray;"    style="borderbottom:3px solid gray;"   
−  
 valign=top   valign=top  
 5   5  
 26 Oct+ <br> 28 Oct*   26 Oct+ <br> 28 Oct*  
 Stability in state space   Stability in state space  
+  * Realization theory, controllability, observability  
+  * Lyapunov equation and stability conditions  
 rowspan=2 style="borderbottom:3px solid gray;"  PD, Ch 2, 4, 5   rowspan=2 style="borderbottom:3px solid gray;"  PD, Ch 2, 4, 5  
 [[CDS 212, Homework 5, Fall 2010HW 5]]   [[CDS 212, Homework 5, Fall 2010HW 5]]  
Line 91:  Line 92:  
 style="borderbottom:3px solid gray;"  6   style="borderbottom:3px solid gray;"  6  
 style="borderbottom:3px solid gray;"  2 Nov* <br> 4 Nov*   style="borderbottom:3px solid gray;"  2 Nov* <br> 4 Nov*  
−   style="borderbottom:3px solid gray;"   +   style="borderbottom:3px solid gray;" Model reduction, LMIs 
+  * Balanced realizations  
+  * KYP lemma  
 style="borderbottom:3px solid gray;"  [[CDS 212, Homework 6, Fall 2010HW 6]]   style="borderbottom:3px solid gray;"  [[CDS 212, Homework 6, Fall 2010HW 6]]  
−   style="borderbottom:3px solid gray;"   +   rowspan=2 style="borderbottom:3px solid gray;"  
+  * Keith Glover  
+  ** Model reduction  
+  ** Loop shaping  
 valign=top   valign=top  
 7   7  
 9 Nov <br> 11 Nov   9 Nov <br> 11 Nov  
 Nonlinear systems   Nonlinear systems  
+  * Stability of nonlinear systems  
+  * L2gain for nonlinear systems  
 {{FBS}}, Ch 4   {{FBS}}, Ch 4  
 [[CDS 212, Homework 7, Fall 2010HW 7]]   [[CDS 212, Homework 7, Fall 2010HW 7]]  
−  
 valign=top   valign=top  
 8   8  
 16 Nov+ <br> 18 Nov   16 Nov+ <br> 18 Nov  
 rowspan=2 style="borderbottom:3px solid gray;"  Sumofsquares   rowspan=2 style="borderbottom:3px solid gray;"  Sumofsquares  
+  * Semialgebraic sets  
+  * Semidefinite programming  
+  * Sumofsquares  
 rowspan=2 style="borderbottom:3px solid gray;"    rowspan=2 style="borderbottom:3px solid gray;"   
 rowspan=2 style="borderbottom:3px solid gray;"  [[CDS 212, Homework 8, Fall 2010HW 8]]   rowspan=2 style="borderbottom:3px solid gray;"  [[CDS 212, Homework 8, Fall 2010HW 8]] 
Revision as of 05:31, 2 October 2010
Feedback Control Theory  
Instructors

Teaching Assistants

Course Description
Introduction to modern feedback control theory with emphasis on the role of feedback in overall system analysis and design. Examples drawn from throughout engineering and science. Open versus closed loop control. Statespace methods, time and frequency domain, stability and stabilization, realization theory. Timevarying and nonlinear models. Uncertainty and robustness.
Announcements
 29 Sep 2010: Slides for lecture 1 are now posted
Textbook
The two primary texts for the course (available via the online bookstore) are
[DFT]  J. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory, Dover, 2009 (originally published by Macmillan, 1992). Available online at http://www.control.utoronto.ca/people/profs/francis/dft.html. 
[PD]  F. Paganini and G. Dullerud, A Course in Robust Control Theory, Springer, 2000. 
The following additional texts may be useful for some students:
[FBS]  K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, 2008. Available online at http://www.cds.caltech.edu/~murray/amwiki. 
Lecture Schedule
Week  Date  Trunk  Reading  Homework  Branch 
1  28 Sep 30 Sep 
Norms for signals and systems  DFT Ch 1, 2 DP Ch 3 
HW 1  
2  5 Oct+ 7 Oct 
Feedback, stability and performance  DFT Ch 3 FBS 9.19.3 FBS 11.111.2 
HW 2 

3  12 Oct+ 14 Oct+ 
Uncertainty and robustness  DFT Ch 4 FBS 12.1‑12.3 
HW 3 

4  19 Oct 21 Oct+ 
Fundamental limits  DFT Ch 6 FBS 11.4, 12.4 
HW 4  
5  26 Oct+ 28 Oct* 
Stability in state space

PD, Ch 2, 4, 5  HW 5  
6  2 Nov* 4 Nov* 
Model reduction, LMIs

HW 6 
 
7  9 Nov 11 Nov 
Nonlinear systems

FBS, Ch 4  HW 7  
8  16 Nov+ 18 Nov 
Sumofsquares

HW 8 
 
9  23 Nov+ 
 
10  30 Nov 2 Dec 
Links with nformation theory and statistical mechanics 

Grading
The ﬁnal grade will be based on homework and a ﬁnal exam:
 Homework (75%)  There will be 9 oneweek problem sets, due in class one week after they are assigned. Late homework will not be accepted without prior permission from the instructor.
 Final exam (25%)  The ﬁnal will be handed out the last day of class and is due back at the end of ﬁnals week. Open book, time limit to be decided (likely N hours over a 48N hour period).
The lowest homework score you receive will be dropped in computing your homework average. In addition, if your score on the ﬁnal is higher than the weighted average of your homework and ﬁnal, your ﬁnal will be used to determine your course grade.
Collaboration Policy
Collaboration on homework assignments is encouraged. You may consult outside reference materials, other students, the TA, or the instructor. Use of solutions from previous years in the course is not allowed. All solutions that are handed should reﬂect your understanding of the subject matter at the time of writing.
No collaboration is allowed on the ﬁnal exam.
Additional References (Optional)
Date  Reading 
28 Sep  AldersonDoyletsmca(Paper),Glycolysis(Paper), SuppInfo, 1NetCmplxIntro(Slides) 